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ABSTRACT: We report a switching model that directly explains the
change in activation energy (EAC) at different RESET stop voltages (Vstop)
in HfO2-based resistive random access memory devices. The dependence
of oxygen vacancy-driven conductive filaments (Vo

2+) density (nD) on Vstop
was validated by a kinetic Monte Carlo (kMC) simulation and hopping
conduction mechanism. A wide operating range of temperatures from
−40 to 175 °C is achieved with stable endurance of 100 ns short pulses
and high retention of more than 10 years at 125 °C. Distinct exponentially
increased multilevel high-resistance states are observed at increasing Vstop
and is attributed to the increase in EAC with Vstop. The increase in EAC due to the increase in Vstop and depletion of nD during RESET
was explained using our proposed switching model. A kMC simulation further emphasizes this relation due to the depletion of Vo

2+

during RESET, which was supported by the increase in trap-to-trap distance in the hopping conduction analysis.

KEYWORDS: RRAM, oxygen vacancy density, kinetic Monte Carlo, hopping conduction, high retention, multilevel switching,
activation energy, wide operating temperature range

■ INTRODUCTION

Resistive random access memory (RRAM) has been one of the
most optimistic non-volatile memories,1−3 largely attributed to
its simple metal−insulator−metal (MIM) structure, high speed
and low power, high scalability, high density, and high
endurance and retention capabilities, along with its high
complementary metal oxide semiconductor (CMOS) compat-
ibility.4−6 Oxide-based RRAM devices are the most widely
studied due to their dielectric properties in MIM structures in
creating memory states from the commonly investigated
metallic or oxygen vacancy-driven conductive filaments
(Vo

2+).7−9 The details of these switching mechanisms are being
debated, but there is strong evidence where device, stack, and/or
thickness engineering could alter the switching mechanism of
the RRAM.10−12 Among all the oxides, high-k HfOx is widely
studied as it is CMOS friendly and has been established as gate
dielectrics in state-of-the-art logic and memory devices. HfOx is
also a great candidate due its good thermal stability and recently
in its multilevel state properties when used as a dielectric of a
switching element.13−17 In traditional memory, there exists two
states of “1” and “0”, which represents the low resistance state
(LRS) and high resistance state (HRS), respectively.18−20

However, to keep up with the ever-growing digital age where
data consumption and generation are growing at an exponential
rate, there is an increasingly strong need to advance toward

multi-bit to enhance the storage scalability of modern-day
memory devices and to delve deeper into neuromorphic
applications.15−17,21−23

Over the past few decades, there have been numerous works
focusing on the modeling studies of multitemperature and
multilevel states in resistive switching devices. A physical model
and a thermally activated hopping model were proposed by
Ielmini for multilevel state filament growth and ion migration.24

Similarly, a physical model was applied by Bousoulas et al. to
highlight the local electric field and temperature profiles of SET/
RESET transitions.25 Numerical models were also proposed by
Larentis et al. and Kim et al. to explore temperature and field-
accelerated migration of Vo

2+.26,27 Arrhenius equation models
were also investigated by Chiu et al. and Khurana et al.28,29

Furthermore, a negative voltage-modulated multilevel resistive
switching during reset was observed and explained using
conduction mechanisms by Chakrabarti et al. and Samanta et
al.30,31 On a similar note, temperature-dependent conduction
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mechanisms were used by Bai et al. to explain the Vo
2+ evolution

at different multilevel states.32 A Vo
2+ evolution model was also

proposed by Qi et al. to explain the dendritic filament under
different negative electric fields.33 Although these works of
literature exhibit various methods of explaining filament
evolution in multilevel states, there have been limited physics
understanding on the behavior and density of oxygen vacancies
(nD) at different stopping reset voltages (Vstop). Such a study is
important because a combination of experimental and
theoretical aspects will provide a more comprehensive under-
standing of filament evolution in multilevel state RRAM.
We validate the multilevel state switching of Pt/HfO2/Ti

resistive switching devices with our proposed activation energy
(EAC) and Vstop switching model in this work. In particular, the
EAC of HfO2 can be obtained from an Arrhenius equation fitting
and was used to explain the relationship between Vstop and nD.
We explored the switching, endurance, and retention character-
istics of Pt/HfO2/Ti resistive switching devices to better
understand their performance. In addition, TEM and XPS
analysis were performed to investigate the uniformity of
deposited films and their crystallinity. Temperature studies
ranging from −40 to 175 °C were also performed to investigate
the I−V characteristics for applications such as automotive and
sensors in different weather conditions. Multilevel states were
also investigated by varyingVstop from−0.9 to−1.3 V at intervals
of −0.1 V. A kinetic Monte Carlo (kMC) simulation of Pt/
HfO2/Ti RRAMs at various Vstop also exhibited an inverse

relation with the number of oxygen vacancies (no) at different
parts of the filament. This model was further validated by the
hopping conduction analysis in the bulk region of the Pt/HfO2/
Ti resistive switching devices, where the increments in the trap-
to-trap distance (a) were observed with increasing Vstop.

■ EXPERIMENTAL METHODS
Pt(10 nm)/HfO2(10 nm)/Ti(100 nm) resistive switching structures
were grown on Si/SiO2 substrates using magnetron sputtering
deposition techniques. The chamber base pressure was lower than 2
× 10−8 Torr, and the sputter pressure was 2 mTorr with 20 sccm of Ar
flow rate. The stacks were patterned into 10 μm × 10 μm devices in a
combination of UV lithography and ion-milling processes. A two-step
lithography process was used to form a cross pattern of the device
junction. These fabrication processes were described in detail from
steps 1 to 13 as shown in Figure 1. Current−voltage (I−V)
measurements were performed using a Keithley 4200 semiconductor
parameter analyzer.

■ CURRENT−VOLTAGE, ENDURANCE, AND
RETENTION INVESTIGATIONS OF PT/HFO2/TI
RRAM DEVICES

The I−V behavior of Pt/HfO2/Ti resistive switching devices
was investigated to better understand the switching character-
istics and HRS multilevel switching properties. Consistent
switching could be observed in Figure 2a where 50 I−V cycles of
one device was plotted. In the 50 I−V cycles, it was found that

Figure 1. Fabrication process of Pt/HfO2/Ti RRAM devices consisting of a two-step lithography, etching, and deposition processes.

Figure 2. (a) Semi-log I−V plots of Pt/HfO2/Ti resistive switching devices showing the forming process and the first 50 I−V switching cycles at an
ON/OFF ratio of ∼50×. (b) Resistance box plot of Pt/HfO2/Ti resistive switching devices exhibiting some device-to-device variability.
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the average SET voltage is 0.5 V at a compliance current of 700
μA, while the Vstop is fixed at−1.2 V, giving an ON/OFF ratio of
about 50×. The forming voltage was observed to be at 1.8 V at a
compliance current of 1 mA. While there was consistent
switching and low cycle-to-cycle variability, it was more
important to observe the presence of gradual switching
characteristics in the RESET state, thus confirming the existence
of multilevel states in the HRS.34,35 In the investigation of
multiple device characteristics, the device-to-device variability of
the resistive switching devices with an average SET voltage of 0.5
V and Vstop at −1.2 V was also shown in a resistance box plot in
Figure 2b, read at −0.1 V. It was found that the median ON/
OFF ratio was about 50×, a ratio large enough for multiple level
resistance switching states to occur.
Endurance studies were also performed at SET/RESET pulse

heights of 0.6 V/−1.3 V at 100 ns pulse widths as shown in the
flow chart of Figure 3a. Two read/write schemes A and B were

implemented at different cycles as shown in the flow charts of
Figure 3a,b. While scheme A was implemented to every (1st,
2nd, 5th) × 10n cycle where n = 0, 1, 2, 3, and 4, scheme B was
implemented to every cycle in between. Scheme A reads the
resistance state after every SET and RESET write, while scheme
B adopts a current-blind pulsed voltage stress (PVS) method
where there is only SET and RESETwriting but no reading.36 At
least 5 × 105 endurance cycles at an average ON/OFF ratio of
50× were observed as the LRS of the 106th cycle converged to
that of the HRS as shown in Figure 3c, indicating a failure at
some point after 5 × 105 endurance cycles. However, these
results show that Pt/HfO2/Ti resistive switching devices
exhibited a good endurance, an attribute necessary to maintain
multilevel HRS switching after multiple endurance cycles.
Retention studies were also performed using an Arrhenius

equation where the lifetime of each device is plotted against an
inverse of temperature as shown in Figure 3d. The devices were

Figure 3. (a) Read/write schemes of endurance performed at SET/RESET pulse heights of 0.6 V/−1.3 V at 100 ns pulse widths. (b) Endurance flow
chart where scheme A was implemented to every (1st, 2nd, 5th)× 10n cycle where n = 0, 1, 2, 3, and 4, while scheme B was implemented to every cycle
in between. (c) At least 5× 105 endurance cycles with an∼50×ON/OFF ratio where LRS converged to the HRS at the 106th cycle. (d) Arrhenius plot
showing that the retention exceeds 10 years at 125 °C.

Figure 4. (a) TEM image of Pt/HfO2/Ti resistive switching devices showing uniformly deposited layers. (b) Characteristic XPS profile of O 1s
showing two oxygen states indicating 4.79% of oxygen vacancies with the XPS profile of Hf 4f (inset) of HfO2 films.
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first switched to LRS and heated up to 310, 330, and 350 °C
while checking their resistance state using a read voltage of−0.1
V. The device is considered failed when the device switched to
the HRS unintentionally, and its corresponding time to fail was
recorded. These three temperature points were plotted and
extrapolated to 10 years (∼3.154 × 108 s). From the
extrapolation, it was observed that the retention exceeds 10
years at 125 °C, exhibiting strong retention capabilities in Pt/
HfO2/Ti RRAM devices. The activation energy (Ea) was also

extracted to be 1.72 eV, which is higher than 0.6 eV of FLASH.37

However, the pre-exponential factor B varies with different types
of insulators and electrode materials, thus producing different
Ea.

6

■ XPS AND TEM CHARACTERIZATIONS OF
PT/HFO2/TI RRAM DEVICES

Material studies such as transmission electron microscopy
(TEM) and X-ray photoelectron spectroscopy (XPS) were also

Figure 5. Fifty cycles of semi-log I−V plots of Pt/HfO2/Ti resistive switching devices measured at (a) −40, (b) 25, (c) 75, and (d) 125 °C, with their
respective average curves (in red).

Figure 6.Temperature dependence of I−V curves of (a) device 1, (b) device 2, and (c) device 3. (d) Linearly fitted Arrhenius relationship, RHRS vs. 1/
T of the devices at different temperatures read at 0.4 V.
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performed on Pt/HfO2/Ti resistive switching devices and HfOx

films, respectively. TEM was performed on the devices to
investigate the uniformity of deposited films and their
c r y s t a l l i n i t y , w h i l e X P S s t u d i e s w e r e p e r -

formed on HfO2 films to verify the Hf and O peaks. The TEM
analysis in Figure 4a exhibited uniformly deposited RRAM
layers with the inset of Figure 4a showing an amorphous HfOx

structure.

Figure 7. Semi-log I−V plots of Pt/HfO2/Ti resistive switching devices with Vstop at (a)−0.9, (b)−1.0, (c)−1.1, (d)−1.2, and (e)−1.3 V, indicating
an increasingHRS trend. (f)Mean of each semi-log I−V plot from panels (a−e) and (g) their corresponding cumulative probability plot atVread =−0.1
V of 200 I−V cycles in each voltage of−0.9 to−1.3 V at intervals of−0.1 V. (h) RHRS vs. Vstop with an exponential fit with 25th−75th percentile as the
range of error bars.
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In the XPS profiles, broad and overlapping O 1s peaks and
well-separated spin-orbit Hf 4f peaks were shown in Figure 4b
and its inset, respectively.38 The deconvolution of the Gaussian
O 1s spectrum revealed two different oxygen components of
binding energies 530.0 and 531.8 eV, respectively, as shown in
Figure 4b. While the 530.0 eV peak is characteristic to O2−, the
higher binding energy of 531.8 eV can be attributed to Vo

2+.39−41

The amount of oxygen vacancies was found to be 4.79% of the
entire oxygen content of the HfOx material by taking the
proportion of areas under the two oxygen peaks in Figure 4b.
Similarly, the binding energies of the Hf 4f peaks were found to
be 16.8 and 18.3 eV as shown in the inset of Figure 4b, which
were characteristic to Hf.42 While Burrell et al. discussed about
using spectral peak energy, intensity, and structural analysis to
determine the composition and chemical state of the material
species, Luo et al. performed XPS on their HfO2 films by
capturing the energy of X-ray-ejected photoemitted electrons
specific to the chemical state and compounds. These analyses
culminated in the area calculations under the material profiles
such that by comparing the areas under the curve of the O 1s and
Hf 4f profiles,38,43,44 the atomic concentrations revealed a
stoichiometry of HfO2 with an error of 0.25%.43,44

■ TEMPERATURE CHARACTERIZATION AND
ARRHENIUS EQUATION RELATION BETWEEN THE
HIGH RESISTANCE STATE AND TEMPERATURE

Various temperature studies were performed at−40, 25, 75, and
125 °C, and 50 cycles of I−V curves were measured at each
temperature as shown in Figure 5a−d, respectively, with average
curves in red.51 The SET voltage ranged from 0.5 to 0.75 V, the
RESET voltage was −1.2 V, while the ON/OFF ratio is about
50× at the same Vread at −0.1 V. The RESET processes have
shown stable HRS switching and maintained ∼50× ON/OFF
ratio at −40, 25, 75, and 125 °C. These observations indicated a
good thermal stability in Pt/HfO2/Ti resistive switching devices
in the HRS even at low temperatures, indicating that the
multilevel HRS is resilient at different temperature ranges.
Further temperature studies at −40, 25, 75, 125, and 175 °C

were also performed on devices 1, 2, and 3 to investigate the full
operating range of Pt/HfO2/Ti RRAM devices. An I−V sweep
of −0.6 to 0.6 V was performed on devices 1, 2, and 3 where the
HRS decreases with an increasing temperature trend as shown in
Figure 6a−c, respectively. For each of these devices, the HRS
values were extracted at each temperature point at a randomly
selected low Vread of 0.4 V. Thereafter, an Arrhenius equation
indicated by eq 1 was linearly fitted on those extracted points as
shown in Figure 6d by taking a natural logarithm on both sides of
eq 1:

=R R
E
kT

exp ,HRS 0
ACi

k
jjj

y
{
zzz

(1)

where RHRS is the HRS, R0 is the pre-exponential factor, EAC is
the activation energy of HfO2, k is the Boltzmann constant, and
T is the corresponding temperature of the performed measure-
ment. The value of R0 is inversely related to nD, which is
indicative of the nD present in Pt/HfO2/Ti devices and is
characteristic to different RRAM stack configurations. Eq 1
shows that R0 is proportional to RHRS, thus making RHRS
inversely related to nD. At the same time, eq 1 also shows that
RHRS is inversely proportional to temperature,29 which would
result in the increase in nD with increasing temperature. More
intuitively, nD increases with increasing temperature because a

higher temperature lowers the resistance of the RRAM device,
which increases nD.

26,28,29,45 The decreased resistance of the
device could be attributed to a less significant filament rupture,
which in turn is caused by a higher nD. A less significant rupture
is represented by a lower extent of recombination between O2−

and Vo
2+, thus causing the density of Vo

2+ to be higher, i.e., nD is
higher. EAC and R0 were found to exhibit average values of 0.022
eV and 152.18 Ω, respectively from the fittings shown in Figure
6d. The value of EAC was also found to be at a consistent range to
the values reported by Larcher et al. and Bersuker et al. for HfOx-
based devices.46,47 The RHRS versus 1/T trend has remained
similar for all three devices, indicating that RHRS increases with
decreasing temperature.

■ SWITCHING MODEL BETWEEN ACTIVATION
ENERGY, RESET STOPPING VOLTAGE, AND RESET
MULTILEVEL RESISTANCE STATES

The EAC of HfO2 was further investigated with nD, which
changes withVstop. Multilevel states were explored by varying the
Vstop from −0.9 to −1.3 V at intervals of −0.1 V as shown in
Figure 7a−e, respectively. It could be observed that as the Vstop

increases from −0.9 to −1.3 V, the HRS increases, and nD
decreases. Further investigations of the multilevel states were
performed where 200 I−V cycles in each voltage of−0.9 to−1.3
V at intervals of−0.1 V shown in Figure 7a−e were averaged and
combined into Figure 7f. Thereafter, the cumulative probability
for all 200 I−V cycles shown in Figure 7a−e were plotted at Vread

= −0.1 V in Figure 7g. It can also be observed from the
cumulative probability plot in Figure 7g that the HRS increased
at a faster rate as voltage increases. Therefore, an exponential
factor between the HRS and Vstop could be used to explain the
filament evolution and its relationship with multilevel states in
eq 2:

α β=R Vexp( ),HRS stop (2)

where RHRS is again the HRS, α is the constant factor of the
exponential function, and β is a factor of the exponent. RHRS is
plotted against Vstop in Figure 7h; αwas found to be 86.34, and β
was found to be 5.42 at the 50th percentile. The 25th and 75th
percentiles were also plotted as the range of the error bars,
mostly exhibiting non-overlap between different multilevel
states. As eq 1 relates RHRS to EAC and eq 2 relates RHRS to
Vstop, which is a function of EAC, the relationship between EAC

and Vstop can be established in eq 3 by combining eqs 1 and 2.

α β= [ − ] +E R kT V kTln( ) ln( )AC 0 stop (3)

As the RHRS versus Vstop measurement was performed at room
temperature, eq 3 was simplified into eq 4 where γ and ϕ are
constants:

γ ϕ= +E VAC stop (4)

Hence, a reduction in nD due to increasing Vstop resulted in a
higher RHRS, which in turn resulted in a larger EAC as shown in eq
4 was in line with the reported literature.25,26 Intuitively, a larger
filament rupture is caused by a larger Vstop due to more
recombination between O2− and Vo

2+, thus resulting in a lower
nD.
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■ KINETIC MONTE CARLO SIMULATION WITH
VARYING OXYGEN VACANCY DENSITY IN
DIFFERENT REGIONS OF THE FILAMENT

kMC modeling was performed on Pt/HfO2/Ti devices using
Ginestra, which applies comprehensive physics to simulate
defect evolution, where the electric field and potential profiles
were calculated by solving Poisson’s and charge continuity
equations.48 The kMC model parameters obtained from the
density functional theory (DFT) and literature were imple-
mented. Generation, recombination, and diffusion of O2− and
Vo
2+are the main processes governing the filament evolution

whenVstop was increased from 0 to−2V. The assumptions of the
kMC model include the following: (1) the full length of the
filament runs from one end of the electrode to the other; (2) the
filament gap during the rupture process is with respect to the top
electrode; and (3) generation, recombination, and diffusion
equations are used to describe oxygen ions and vacancies. These
processes and model parameters were exhibited in the flowchart
as shown in Figure 8.

In the generation of defects associated to the breakage of Hf−
O bonds during the SET operation, the rate of generation of
oxygen vacancies and ions GF is calculated by the thermochem-
ical theory as shown in eq 5.49,50

= · −
− ·[ + ]·

·
G x y z v

E p k F x y z

k T x y z
( , , ) exp

(2 )/3 ( , , )

( , , )
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where v is the effective vibration frequency, EA is the zero field
effective activation energy to break the metal-oxygen bond, F is
the electric field, kB is the Boltzmann’s constant, p0 is the
dielectric molecular dipole moment, and k is the relative
dielectric constant. Similarly, during RESET, the diffusion and
recombination of carriers play an important role, and their rate
can be calculated by eqs 6 and 7.49
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where RD is the diffusion rate, EA, D is the diffusion activation
energy, kD is a factor based on atomic material properties, FEFF is
the electric field component along the diffusion direction, RR is
the recombination rate, and EA, R is the recombination activation
energy.49,51,52 Table 1 also shows the model parameter values
used in the kMCmodel simulation, obtained from the DFT and
literature.

In the validation of eq 4, a kMC simulation of Pt/HfO2/Ti
devices considers the more general case of Vo

2+
filament species

during the RESET as shown in Figure 9a.59−62Vstop ranging from
−1.2 to −2 V were simulated, and the number of oxygen
vacancies (no) versusVstop in Figure 9a revealed that no remained
constant at the beginning. However, when Vstop is sufficient to
overcome the oxide barrier, no decreases linearly until it
eventually saturates at a certain number. For simplicity, the
filament was separated into two regions, the top 25% of the
filament and the bottom 75% of the filament. Further analysis of
no at different locations of the filament at differentVstop were also
performed where the no was obtained at the top 25% gap and
bottom 75% non-gap regions of the filament as shown in Figure
9b. It was observed that no decreases in all parts of the filament as
Vstop increases. The kMC simulation suggests that the rupture at
the gap region becomes larger as Vstop is increased from −1.2 to
−2 V, as shown in Figure 9b.63−66 As no is proportional to nD, the
kMC model validates the inverse relationship between Vstop and
nD.

■ HOPPING CONDUCTION OF PT/HFO2/TI RRAM
DEVICES AND THE RELATION BETWEEN HOPPING
DISTANCE AND RESET STOPPING VOLTAGE

While the filament rupture at the top 25% gap of the filament
with increasingVstop is well established, the decrease in nD for the
rest of the filament might not be as well understood. Therefore,
the decrease in nD for the bottom 75% of the filament was further
investigated using conduction mechanism studies. Although
Fowler−Nordheim (FN) tunneling has been considered as one
of the candidates for conduction mechanism studies, hopping

Figure 8. Modeling flow chart indicating the key processes and model
parameters used to perform a kMC study on the behavior of oxygen
vacancies at different Vstop.

Table 1.Model Parameters Used in the kMCModelObtained
from the DFT and Literature

parameters obtained from the DFT and literature

parameters description value reference

EREL relaxation energy of an isolated
HfOx defect

1.19 eV 53

rt HfOx defect radius 5.64 Å 49

k HfOx relative dielectric constant 21 54
kTH HfOx thermal conductivity 0.005 W/cm K 55
v effective O−Hf bond vibration

frequency
7 × 1013 Hz 56

p0 O−Hf bond polarization factor 5.2 eÅ 56
EA O−Hf bond breakage zero-field

effective activation energy
2.9 eV 56

EA,D generation activation energy vacancies: 1.5 eV;
ions: 0.7 eV

57

EA,R recombination activation energy 0.2 eV 58
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conduction as part of trap-assisted tunneling (TAT) is more
suitable to interpret these results.67 This is due to the focus of
this work at high negative voltages and trap-to-trap character-
istics at the bulk during the rupture process. In the fitting
analysis, hopping conduction was found to be the dominant
conduction mechanism for Vstop from −0.9 to −1.3 V as shown
in Figure 10.

The hopping conduction used for the analysis was shown in
eq 8:

ϕ
=

−
J qanvexp

qaE
kT

Ti
k
jjjj

y
{
zzzz

(8)

where n = 5 × 1024 m−3 is the electron concentration in the
conduction band,68 v = 2 × 1013 Hz is the frequency of thermal
vibration of electrons in the trap site,69 a is the mean distance
between traps, and ϕT is the energy level of the trap site below
the conduction band.70 The linear fitting of hopping conduction
was performed by taking the natural log on eq 8 followed by an
ln(I) versus V plot as shown in Figure 10. The selected fitting
voltage range of −0.9 to −1.3 V with a corresponding current
range of ∼2 orders exhibited a good fit with linear correlation.
Unlike the abrupt SET process found in Pt/HfO2/Ti RRAM
devices, the gradual RESET switching process enabled the
investigation of trap-to-trap characteristics at different Vstop and
hence different multilevel states. The gradient (M) and vertical
intercept (C) from eqs 9 and 10 can also be extracted from the
fitting ln(I) = MV + C:

=M
qa

kTd (9)

ϕ
= −C qanVa

kT
ln( ) T

(10)

where d is the distance between the top and bottom electrode,
while a and ϕT can be obtained from eqs 9 and 10, respectively.
The parameter a extracted from eqs 9 and 10 was shown to
increase as Vstop increases from −0.9 to −1.3 V at intervals of
−0.1 V in Table 2. As Vstop increases, Vo

2+ became further apart as

indicated by the larger a to be overcome, thus resulting in a
decrease in nD, whileϕT remained fairly constant at 0.86 eV. As a
larger a is caused by a less dense filament or lower nD, the
hopping conduction analysis also validates the inverse relation-
ship between Vstop and nD.

■ CONCLUSIONS
In conclusion, the multilevel resistance states of Pt/HfO2/Ti
RRAM devices obtained from increasing Vstop have shown to be
directly related to EAC but inversely related to nD. The average
EAC value was extracted from an Arrhenius equation to be 0.022
eV at a wide temperature range of−40 to 175 °C and was shown
to be inversely proportional to nD as a part of our proposed
switching model. The multilevel high resistance states were
achieved at Vstop from −0.9 to −1.3 V at intervals of −0.1 V. In
the validation of the relationship between nD and Vstop, kMC
simulations exhibited a decrease in nD at increasing Vstop at
different regions of the filament. The decrease in nD at increasing
Vstop was also attributed to a larger trap-to-trap distance to be
overcome from 0.83 to 0.93 nm in the hopping conduction
mechanism analysis. The uniformly fabricated Pt/HfO2/Ti
devices exhibited at least 5× 105 endurance cycles at 100 ns with
a retention for more than 10 years at 125 °C.With good thermal
stability and multilevel state capabilities, Pt/HfO2/Ti RRAM
devices and their proposed models have great potential for
neuromorphic engineering in automobiles.
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